Generation of sports highlights using motion activity in combination with a common audio feature extraction framework
نویسندگان
چکیده
In our past work we have used temporal patterns of motion activity to extract sports highlights. We have also used audio classification based approaches to develop a common audio-based platform for feature extraction that works across three different sports. In this paper, we combine the two aforementioned complementary approaches so as to get higher accuracy. We propose a framework for mining the semantic audio-visual labels in order to detect interesting events. Our results show that the proposed techniques work well across our three sports of interest, soccer,
منابع مشابه
Audio events detection based highlights extraction from baseball, golf and soccer games in a unified framework
We developed a unified framework to extract highlights from three sports: baseball, golf and soccer by detecting some of the common audio events that are directly indicative of highlights. We used MPEG-7 audio features and entropic prior Hidden Markov Models(HMM) as the audio features and classifier respectively to recognize these common audio events. Together with preand post-processing techni...
متن کاملGeneration of Sports Highlights Using a Combination of Supervised & Unsupervised Learning in Audio Domain
In our past work we have used supervised audio classification to develop a common audiobased platform for highlight extraction that works across three different sports. We then use a heuristic to post-process the classification results to identify interesting events and also to adjust the summary length. In this paper, we propose a combination of unsupervised and supervised learning approaches ...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003